What is the future change of WRGB OLED to respond to QD-OLED?

2As Samsung Display’s QD-OLED begins to be applied to TVs and monitors in earnest in 2022, technological changes are being detected for LG Display’s WRGB OLED, which has been leading the large OLED market.

LG Display’s WRGB OLED has produced a WBC structure consisting of two blue layers and one red+yellow green layer in Paju by the end of 2021, and a WBE structure consisting of two blue layers and one red+green+yellow green layer in Guangzhou. Deuterium substitution technology was applied to the blue of the WBE structure.

Since 2022, LG Display has stopped producing WBC panels from its Paju line and has been producing ‘OLED.EX’ panels with deuterium substitution technology applied additionally to green of WBE produced in Guangzhou.

<Photo of OLED.EX presented by LG Display at the 2022 OLED Korea Conference>

At SID 2022, LG Display also exhibited a large OLED panel with micro lens array technology. Micro lens array technology was applied to Samsung Electronics’ ‘Galaxy S Ultra’ series, and it is the first technology applied to large OLEDs. LG Display is known to expect a 20% improvement in luminance compared to the previous one by applying micro lens array technology. Panels which micro lens array technology is applied are expected to be produced in Paju from the second half of this year.

Lastly, it is known that LG Display is developing a structure in which yellow green is removed from WRGB OLED. By eliminating yellow green, material and processing costs can be saved, and color gamut is expected to be improved.

Attention is paid to how LG Display’s WRGB OLED will evolve to compete against QD-OLED.

<OLED panel with micro lens array technology exhibited by LG Display at SID 2022>

SID Display Week 2022

[SID2022] Display Week Booth Tour

[UBI Research China Trend Report] Will BOE Provide UPC Panel with Transparent PI Substrate to Oppo?

BOE, the largest display maker in China, produces UPC (Under Panel Camera) panels with transparent PI substrates.

UPC is a technology that makes a full screen of a smartphone possible by placing the front camera under the screen. The UPC technology that is currently commercialized is a method of patterning the cathode electrode and changing the resolution near the camera. However, this time it is expected that a transparent PI substrate will be additionally applied to the UPC panel supplied by BOE to Oppo.

Existing transparent PI substrates had difficulties in mass production due to the high process temperature of LTPS TFT. Yet, the recent test results of the panels with the transparent PI substrate produced by BOE reached most conditions of satisfactory levels even at the LTPS TFT process temperature.

The UPC OLED panel with the transparent PI substrate developed by BOE is expected to be installed in Oppo’s upcoming products.

Introducing iPhone 14 Display Specifications and Panel Vendors

<Apple iPhone 14 Series Specifications>

 

Samsung Display, LG Display, and BOE are expected to supply panels to Apple’s new iPhone 14 series in 2022. It is expected that Samsung Display will supply panels to all models in addition to iPhone 13 series. LG Display will supply 6.12-inch LTPS models and 6.69-inch LTPO models. BOE will supply panels only to 6.12-inch LTPS models.

The existing 5.4-inch mini model has been removed from the iPhone 14 series and a 6.69-inch Max model has been added. The size and resolution of iPhone 14 Max are the same as iPhone 14 Pro Max and LTPS TFT is applied instead of LTPO TFT.

In terms of design, the iPhone14 Pro and 14 Pro Max will have a punch hole design instead of the conventional notch. Apple’s punch hole design is expected to be applied as a double punch hole design due to various sensors and cameras.

Meanwhile, the total OLED panel supply to Apple in 2022 is expected to be about 215 million units, with Samsung Display expected to supply 135 million units, LG Display 55 million units, and BOE 25 million units. However, shipments are expected to be organically controlled due to market conditions and Apple’s policies.