Posts

Transparent Electrode Needs Development for Next Generation Display to Surge

Recently, with various research results regarding transparent electrode, interest in next generation transparent electrode is increasing.

 

In early December, UNIST (Ulsan National Institute of Science and Technology) developed printing technology that can arrange the Ag nanowire in the direction chosen on top of substrate. Ag nanowire is transparent electrode that can be applied to large area flexible touch panel and display products. This technology allows the surface to be flat through the fusion of nanotechnology to the existing printing process and increases transmittance.

 

Around the same time, ETRI (Electronics and Telecommunications Research Institute) developed technology that replaces thin metal electrode on top of OLED substrate with graphene transparent electrode. The metal electrode that were being used in OLED was mostly silver (Ag) material, but due to the reflection of internal light, the viewing angle changed depending on the angle. The external light also affected picture quality due to reflection. The newly developed technology used graphene that mostly does not reflect internal/external light as transparent electrode and improved transmittance and picture quality.

 

At present, ITO (indium tin oxide) is most widely used as transparent electrode materials. However, the supply is limited and flexible electronic device application is narrow. As such, the demand for the development of new materials that can replace this is greatly increasing. Particularly, as ITO is not suitable for stretchable device, the next generation transparent electrode development is considered to be a key issue for future display.

 

At 2016 Production/Process Technology Development and Application Cases by Flexible Transparent Electrode and Film Materials Seminar (December 17) held in Seoul, South Korea, Dr. Won Mok Kim of KIST (Korea Institute of Science and Technology) discussed, of many flexible transparent electrodes, TCO (transparent conductive oxide) production and process technology through presentation titled ‘TCO based flexible transparent electrode production and process technology development trend and applications’.

 

Of the transparent conductive materials, oxides have been researched the longest, and they are most widely used transparent conductive materials. Oxide including conductive materials have optical band gap of ≥3.0 eV and therefore has high transmittance and can be flexible. Kim revealed that TCO needs further improvement in conductivity and transmittance for display application.

 

Regarding transparent body, when refractive indexes of components are different, the path of light through the transparent body is refracted. When this occurs, the object becomes hazy although transparent. Haze is quantified and used to assess the transparent body’s performance. Kim explained that for solar cell the haze is purposefully increased to transmit more light to the internal active materials. However, if the display is clouded the clarity of image is reduced and therefore haze has to be lowered. To achieve this, Kim reported that the TCO’s surface roughness has to be reduced.

 

Kim revealed that there are two issues, temperature and flexibility, when TCO is used as transparent electrode. ITO’s conductivity is highest at 300 ℃, and for ZnO it is around 200 ℃. Channel cracks could occur with TCO when higher than bending strain is applied, and the crack could snap when it is bent further, destroying the device performance. Kim explained that to increase the bending strain, the thickness has to be reduced. However, when doing so as the sheet tension increases, the process has to be designed carefully considering the tradeoff.

 

Transparent electrode could be applied to display, solar cell, touch panel, and lighting among others and therefore requires much development. Although oxides have been long researched as transparent electrode materials, Kim concluded that even more diverse value can be created through fusion with next generation materials.

 

그림1

투명전극, 차세대 디스플레이 도약을 위한 개발이 필요

최근 투명전극에 대한 여러 연구성과들이 발표되며 차세대 투명전극에 대한 관심이 높아지고 있다.

12월 초 UNIST는 Ag nano wire를 원하는 기판에 원하는 방향으로 정렬시키는 인쇄기술을 개발했다. Ag nano wire는 플렉서블 터치패널과 디스플레이 제품에 대면적으로 생산이 가능한 투명전극으로 이번에 개발한 기술은 기존 인쇄공정에 나노기술을 접목하여 표면을 매끄럽게 하고 투명도를 높였다.

비슷한 시기 ETRI는 OLED 기판 위의 얇은 금속전극을 그래핀 투명전극으로 대체하는 기술을 개발했다. 그 동안 OLED에 사용하던 금속전극은 주로 은(Ag)소재였지만 내부광에 의한 반사로 각도에 따라 시야각이 바뀌는 문제가 있었다. 또한 외부광에 의해서도 반사로 인해 화질에 영향을 주었다. 이번에 개발한 기술은 내/외부광에 대한 반사가 거의 없는 그래핀을 투명전극으로 적용해 투명도와 화질을 개선했다.

현재 투명전극 물질로 ITO(Indium Tin Oxide)가 가장 널리 사용되고 있지만 자원량에 한계가 있고 플렉서블 전자소자에 적용되는데 한계가 있어 이를 대체할 수 있는 새로운 물질 개발에 대한 요구가 크게 증가하고 있다. 특히 stretchable 소자에는 ITO가 동작하지 않기 때문에 차세대 투명전극의 개발은 미래 디스플레이에 핵심적인 요소로 보인다.

여의도 사학연금회관에서 17일 개최된 ‘2016년 유연 투명전극 및 필름 소재 별 제조/공정 기술개발과 적용사례 세미나’에서 KIST(한국과학기술연구원)의 김원목 박사는 ‘투명 전도성 산화물(TCO) 기반 유연 투명전극 제조 및 공정 기술개발동향과 적용사례’라는 제목의 강연을 통해 여러 유연 투명전극들 중 TCO에 대한 제조와 공정기술에 대해 발표했다.

투명 전도성 산화물이란 전기 전도도를 가지면서 광학적으로 투명한 물질 중 oxide(산소)가 함유된 물질을 말한다. 투명 전도성 재료 중 산화물은 가장 오래 연구가 진행되었으며 투명전극 재료로 널리 쓰이는 물질이다. Oxide가 함유된 전도성 물질은 광학적인 bandgap이 3.0eV이상으로 크기 때문에 투과율이 높은 성질을 가지고 flexible이 가능한 성질을 가지고 있다. 김 박사는 투명 전도성 산화물에는 크게 전기전도성과 투과율을 높이는 이슈가 있다고 밝히며 디스플레이에 적용될 경우 전기전도성과 투과율이 특히 높아야 한다고 발표했다.

투명체에 있어서 요소들 사이의 굴절률이 다를 경우 투명체를 지나는 빛의 경로가 굴절되게 된다. 이 경우 투명하지만 뿌옇게 보이는 현상이 나타나는데 이 정도를 haze(혼탁도)라고 부른다. Haze는 정량화하여 투명체의 성능을 평가하는데 사용된다. 김박사는 태양전지는 내부 active material에 빛을 더 많이 전달해주기 위해 haze를 일부러 높이기도 하지만 디스플레이는 뿌옇게 보이면 이미지가 원래대로 보이지 않기 때문에 haze를 낮추어주어야 하며 이를 위해 투명 전도성 산화물의 표면 roughness를 낮추어 주어야 한다고 발표했다.

김 박사는 투명 전도성 산화물을 투명전극으로 적용할 때 온도와, 플렉시블 2가지 이슈가 있다고 밝혔다. ITO는 공정온도 300℃에서 전도성이 가장 좋고 ZnO는 약 200℃에서 전도성이 가장 좋다. 또한 투명 전도성 산화물은 어느 정도의 bending strain을 넘으면 channel crack이 나오고 여기서 더 구부려지면 crack이 끊어지면서 소자의 성능이 망가지게 된다. 김 박사는 “Bending strain을 높이기 위해서는 두께를 얇게 해야 하는데 이때 면저항이 높아지기 때문에 trade off 관계를 잘 따져 공정설계를 해야 한다.”고 발표했다.

투명 전극은 디스플레이와 태양전지, 터치패널, 조명 등에 적용될 수 있을 것으로 보이기 때문에 많은 개발이 필요하다. 김박사는 산화물은 투명전극재료로 오래 연구가 진행되었지만 차세대 재료와의 융합을 통해 더욱 다양한 가치를 창출할 수 있을 것으로 보인다고 하며 발표를 마쳤다.

 

Professor Jang-Ung Park of UNIST Discusses Transparent Electrode’s Present and Future

During the International Advanced Materials & Application Technology Expo (November 25-27), Professor Jang-Ung Park of Ulsan National Institute of Science and Technology (UNIST) gave an in-depth lecture on transparent electrode’s new technology and research results under the presentation title of ‘Technology Trend and Development Direction of High Performance Transparent & Stretchable Electrodes Using Graphene and Ag Nanowire Complex’.

 

Transparent electrode is an electronic component with usually ≥80% transparency, and sheet tension of ≤500Ω/ㅁ of conductivity. This technology is widely used in electronics including LCD front electrode and OLED electrode in display, touchscreen, solar cell, and optoelectronic device.

 

Park explained that the main market for transparent electrode is display and touchscreen, and announced that the transparent electrode market is to grow into US$4,800 million in 2020 from 2015’s US$ 3,400 million.

 

The electrode materials that is mainly being used at present is ITO (indium tin oxide) film produced through evaporation or sputtering. ITO’s merits include good conductivity from the low sheet tension and suitable for mass production. However, China is the main producer of the rare main material, indium, and has a drawback of high processing temperature. As such, research for indium replacement is continuing.

 

Graphene, CNT (carbon nano tube), Ag nanowire, and metal mesh are some of the materials that are in the spotlight as ITO replacement. However, Park emphasized that transparent electrodes that are being developed at present have difficulty in surpassing ITO in terms of electronical and optical properties. Instead, he explained that as the display shape changes, the replacement material can be used for displays where ITO cannot be applied.

 

At present, ITO is being used as the main electrode material for flat display. However, its weakness against mechanical stress and limitation in flexibility led to some views that flexible display application will be difficult. Regarding this Park explained that thickness of substrate is more important than ITO’s traits for display’s curvature radius and therefore if substrate becomes thinner, ITO can be applied even to foldable display as well as flexible. He added that although folding the display is acceptable, stretchable display is impossible as the properties are destroyed when pulled.

 

Park emphasized that in order for the wearable display market, including the smartwatch market, to grow, the comfort of the user is important. He reported as a human body does not conform to a specific curvature radius, to improve the user comfort, stretchable panel that can bend in diverse directions is a necessity. For this to be possible, transparent electrode that can replace ITO is required.

 

For example, watch shaped application can be replaced with stretchable display up to the strap part that wraps around the wrist. Glasses shaped application can have stretchable display for curved areas such as lenses. Also, within textiles industry, research into smart textiles through electronic circuit application is continuing.

 

As the transparent electrode that can replace ITO, Park suggested graphene and Ag nanowire complex. Ag nanowire reduces high sheet tension of graphene, and graphene prevents Ag nanowire’s oxidization, complementing each other. Park revealed that ≥90% transmittance and ≤30Ω/ㅁ was achieved through research. He emphasized as stretchability increased to 100%, it is suitable for stretchable display.

 

According to Park, transparent electrode can be applied to transparent stretchable sensor and transparent TFT as well as display. With confirmation of continued research regarding this issue, Park concluded his presentation.

UNIST 박장웅 교수, 투명전극의 현재와 미래에 대해 논하다.

11월 26일 개최된 ‘2015 국제 신소재 및 응용기술전참관 및 그래핀 투명전극 소재 별 기술 개발 동향 및 발전방향 세미나’에서 울산과학기술대학교 박장웅 교수는 ‘그래핀과 Ag nano wire의 복합체를 이용한 고기능 유연투명전극 기술 개발동향 및 발전방향’이라는 주제로 투명전극에 대한 신기술과 개발 성과 등에 대한 심도 있는 강연을 했다.

투명전극은 통상 80% 이상의 고투명도와 면저항 500Ω/ㅁ 이하의 전도도를 가지는 전자 부품으로 LCD 전면 전극, OLED 전극 등 디스플레이, 터치스크린, 태양전지, 광전자 소자 등 전자분야에 광범위하게 사용되는 기술이다.

박교수는 투명전극의 주된 시장은 디스플레이와 터치스크린이라고 설명하며 2015년 US$3,400million 규모인 투명전극 시장이 2020년에는 US$4,800million까지 성장할 것으로 전망된다고 발표했다.

현재 주로 채용되고 있는 전극재료는 증착법이나 sputtering에 의해 제조되는 ITO(Indium Tin Oxide) 필름이다. ITO는 면저항이 낮아 전기전도성이 우수하고 대량생산에 적합하다는 장점이 있다. 하지만 주원료인 인듐이 중국에서 독점하고 있는 희소성이 있는 물질이며, 공정온도가 높다는 단점이 있어 대체물질을 찾기 위한 연구가 지속되고 있다.

이런 연구를 통해 그래핀과 CNT(Carbon Nano Tube), Ag nano wire, metal mesh 등이 ITO를 대체할 수 있는 물질로 각광받고 있다. 하지만 박교수는 현재 개발되고 있는 투명전극들은 전기적 광학적 특성 등에서 ITO를 넘어서기 힘들다고 강조했다. 대신 디스플레이의 형태가 변화됨에 따라 ITO가 사용될 수 없는 형태의 디스플레이에 대체 물질이 쓰일 수 있을 것이라고 설명했다.

현재 ITO는 평면 디스플레이의 주요 전극 재료로 쓰이고 있다. 하지만 mechanical stress에 취약하기 때문에 유연성에 한계가 있어 플렉서블 디스플레이에 적용되기 힘들 것이라는 시각이 있었다. 이와 관련해 박교수는 “디스플레이의 곡률반경에는 ITO의 특성보다 기판의 두께가 더 중요한 요소이기 때문에 기판의 두께가 얇아진다면 플렉서블 뿐만 아니라 폴더블 디스플레이에도 ITO가 충분히 적용될 수 있을 것이다.”라며 “구부려지는 것은 상관없지만 문제는 잡아당길 때 특성이 파괴되기 때문에 stretchable 디스플레이가 불가능하다.”고 밝혔다.

박교수는 smartwatch를 포함한 wearable 디스플레이 시장이 성장하기 위해서는 사용자가 느끼는 착용감이 중요하다고 강조하며 “사람의 인체는 곡률반경이 정해져 있지 않기 때문에 기존 wearable 디스플레이의 착용감을 높이기 위해 다양한 축의 구부림이 가능한 stretchable 패널 적용이 필수적이며 이를 위해서 ITO를 대체할 수 있는 투명전극이 필요하다.”고 발표했다.

예를 들어, 시계 형태의 애플리케이션은 손목을 감는 스트랩 부분까지 stretchable 디스플레이로 대체할 수 있으며, 안경 형태의 애플리케이션은 렌즈와 같은 곡면 부위에도 stretchable 디스플레이를 적용할 수 있다. 또한 섬유산업에서도 스마트 섬유라는 개념으로 전자회로화 할 수 있는 연구가 속속 선보이고 있다.

박교수는 ITO를 대체하는 투명전극에 대한 연구결과로 그래핀과 Ag nano wire의 복합 구조체를 제시하였다. Ag nano wire는 그래핀의 높은 면저항을 낮추어주는 역할을 하고 그래핀은 Ag nano wire의 산화를 막는 역할을 하기 때문에 서로 상호보완적인 관계가 될 수 있다고 설명했다. 또한 박교수는 연구를 통해 90%이상의 투과율과 30Ω/ㅁ이하의 면저항을 달성했다고 밝히면서 “특히 stretchability를 100%까지 높였기 때문에 stretchable 디스플레이에 적용하기 적절하다.”고 강조했다.

박교수는 해당 투명 전극은 디스플레이뿐만 아니라 투명 stretchable 센서와 투명 TFT 등에도 적용할 수 있다고 밝히며 이와 관련된 연구도 지속하고 있다고 하며 발표를 마쳤다.